Reciprocal complementary Wiener numbers of trees, unicyclic graphs and bicyclic graphs
نویسندگان
چکیده
منابع مشابه
Leap Zagreb indices of trees and unicyclic graphs
By d(v|G) and d_2(v|G) are denoted the number of first and second neighborsof the vertex v of the graph G. The first, second, and third leap Zagreb indicesof G are defined asLM_1(G) = sum_{v in V(G)} d_2(v|G)^2, LM_2(G) = sum_{uv in E(G)} d_2(u|G) d_2(v|G),and LM_3(G) = sum_{v in V(G)} d(v|G) d_2(v|G), respectively. In this paper, we generalizethe results of Naji et al. [Commun. Combin. Optim. ...
متن کاملThe Hyper-Zagreb Index of Trees and Unicyclic Graphs
Topological indices are widely used as mathematical tools to analyze different types of graphs emerged in a broad range of applications. The Hyper-Zagreb index (HM) is an important tool because it integrates the first two Zagreb indices. In this paper, we characterize the trees and unicyclic graphs with the first four and first eight greatest HM-value, respectively.
متن کاملThe Inertia of Unicyclic Graphs and Bicyclic Graphs
Let G be a graph with n vertices and ν(G) be the matching number of G. The inertia of a graph G, In(G) = (n+, n−, n0) is an integer triple specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix A(G), respectively. Let η(G) = n0 denote the nullity of G (the multiplicity of the eigenvalue zero of G). It is well known that if G is a tree, then η(G) = n− 2ν(G). Gu...
متن کاملOn the Modified Randić Index of Trees, Unicyclic Graphs and Bicyclic Graphs
The modified Randić index of a graph G is a graph invariant closely related to the classical Randić index, defined as
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2009
ISSN: 0166-218X
DOI: 10.1016/j.dam.2009.05.001